Abstract

We present an experimental feasible scheme to synthesize two-mode continuous-variable entangled states of two superconducting resonators that are interconnected by two gap-tunable superconducting qubits. We show that, with each artificial atom suitably driven by a bichromatic microwave field to induce sidebands in the qubit-resonator coupling, the stationary state of the photon fields in the two resonators can be cooled and steered into a two-mode squeezed vacuum state via a dissipative quantum dynamical process, while the superconducting qubits remain in their ground states. In this scheme the qubit decay plays a positive role and can help drive the system to the target state, which thus converts a detrimental source of noise into a resource.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.