Abstract

Photonic techniques based on evanescent waves sensing (such as the surface plasmon resonance (SPR) method) using plasmonic and nanostructured metallic/semiconductor materials hold huge potential in biosensing and associated analysis of biomolecular interactions. However, conventional SPR suffers from low penetration depths (<300 nm), limiting the applications for the surface interactions and analysis of larger biomolecules, such as for bacteria cells with a typical size of ∼1 μm. These cases result in the measured signal being non-monotonic with concentration, making the technique unreliable for high concentrations. Infrared wavelengths can be used, but then signal contrast suffers, and the instruments required for mid-infrared or longer wavelengths are prohibitively expensive. With this in mind, we developed a “nearly” guided SPR (NGWSPR) structure to enhance the performance of these sensors by increasing penetration depth and figure of merit using wavelengths in the optical telecommunication window where off-the-shelf instruments are available at low cost. The use of this technique for monotonic detection of cultured live Escherichia coli bacterial cells is demonstrated, thus opening a pathway to utilize and promote the approach for biosensing, biomedical research and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.