Abstract

Flavonoids are valuable natural products widely used in human health and nutrition applications. Engineering microbial consortia to express complex flavonoid biosynthetic pathways is a promising approach for flavonoid production. In this study, the entire flavonoid biosynthetic pathway was split into two independent pathways, each of which was contained in separate Saccharomyces cerevisiae cells. The first cell type, sNAR5, which was genetically engineered to express the naringenin biosynthetic pathway, produced 144.1 mg/L naringenin. The second cell type was genetically modified with the heterologous naringenin-to-delphinidin pathway. A coculture produced a delphinidin titer, significantly higher than that produced in a monoculture of strain sDPD2, harboring the entire pathway. Furthermore, we successfully employed this coculture platform for the production of 3 flavonols and 2 anthocyanidins in flask-scale culture. This coculture platform paves the way for the development of an economical and efficient process for microbial flavonoid production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.