Abstract
In this communication, air jet spinning (AJS)was used to successfully fabricate nanofibers of poly (e-caprolactone)(PCL)onto which Multi-Walled Carbon Nanotubes (MWCNTs)were loaded at 0.5 to 1.0 wt % using a cost-effective fabrication technique. SEM images indicated that the incorporation of MWCNTs resulted in the production of larger fiber sizes with a more uniform size distribution than plain PCL. TEM observation showed the MWCNTs were parallel and oriented along the axes of the nanofibers. Specific interfacial interactions between the PCL and the MWCNTs enhanced the mechanical properties of the nanofibers in terms of tensile modulus and tensile strength. The electrical conductivity improved at the higher (1.0%)MWCNT concentration, alongside improved hydrophilicity, demonstrated through decreases in contact angle measurements. Moreover, in vitro studies with human bone osteosarcoma cells (Saos-2)revealed that MWCNT scaffolds displayed desired cell attachment and spreading. These high performance MWCNT-PCL nanocomposite fiber mats have been demonstrated as good candidates for modern microelectronics and tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.