Abstract

The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by controlling both the carrier density and the interfacial energy in a semiconducting ZnO nanowire (NW), thereby achieving its intrinsic efficiency limits. A SPENG with carrier-controlled ZnO NWs exhibits excellent energy harvesting characteristics with an average power density of 0.9 mW cm−3, as well as a near 50 fold increase in both output voltage and current compared to those of a conventional ZnO NW. In addition, we demonstrate for the first time that an optimized SPENG is large enough and very suitable to drive electrophoretic ink displays based on voltage-drive systems. This fundamental progress makes it possible to fabricate high performance nanogenerators for viable industrial applications in portable/wearable personal electronics such as electronic papers and smart identity cards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.