Abstract

Photoelectrochemical (PEC) water oxidation based on semiconductor materials plays an important role in the production of clean fuel and value-added chemicals. Nanostructure-interface engineering has proven to be an effective way to construct highly efficient PEC water oxidation photoanodes with good light capture, carrier transport, and water oxidation kinetics. However, from theoretical and application perspectives, the relationship between the nanostructure and interface of photoanode materials and their PEC performance remains unclear. In this review, the PEC water oxidation reaction mechanism and evaluation criteria are briefly presented. The theoretical basis and research status of the nanostructure-interface engineering on constructing high-performance PEC water oxidation photoanodes are summarized and discussed. Finally, the current challenges and the future opportunities of nanostructure-interface engineering for the PEC reactions are pointed out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.