Abstract
Recently, hBN has become an interesting platform for quantum optics due to the peculiar defect-related luminescence properties. In this work, multicolor radiative emissions are engineered and tailored by position-controlled low-energy electron irradiation. Varying the irradiation parameters, such as the electron beam energy and/or area dose, we are able to induce light emissions at different wavelengths in the green-red range. In particular, the 10 keV and 20 keV irradiation levels induce the appearance of broad emission in the orange-red range (600-660 nm), while 15 keV gives rise to a sharp emission in the green range (535 nm). The cumulative dose density increase demonstrates the presence of a threshold value. The overcoming of the threshold, which is different for each electron beam energy level, causes the generation of non-radiative recombination pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.