Abstract

Promoting the intrinsic activity and accessibility of basal plane sites in 2D layered metal dichalcogenides is desirable to optimize their catalytic performance for energy conversion and storage. Herein, a core/shell structured hybrid catalyst, which features few‐layered ruthenium (Ru)‐doped molybdenum disulfide (MoS2) nanosheets closely sheathing around multiwalled carbon nanotube (CNT), for highly efficient hydrogen evolution reaction (HER) is reported. With 5 at% (atomic percent) Ru substituting for Mo in MoS2, Ru‐MoS2/CNT achieves the optimum HER activity, which displays a small overpotential of 50 mV at −10 mA cm−2 and a low Tafel slope of 62 mV dec−1 in 1 m KOH. Theoretical simulations reveal that Ru substituting for Mo in coordination with six S atoms is thermodynamically stable, and the in‐plane S atoms neighboring Ru dopants represent new active centers for facilitating water adsorption, dissociation, and hydrogen adsorption/desorption. This work provides a multiscale structural and electronic engineering strategy for synergistically enhancing the HER activity of transition metal dichalcogenides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.