Abstract
An engineering model is presented for a self-consistent calculation of the growth of an oxide film in circulation loops with a heavy liquid metal coolant and concentrations of impurities using STAR-CCM+ software complex. The modeling of thermohydraulic and physicochemical processes is based on solving the associated three-dimensional equations of hydrodynamics, heat transfer, convective-diffusive transport, and the formation of chemically interacting impurity components in the coolant volume, and on the surface of steels. The parabolic constant, which is determined by the degree of steel oxygen consumption, obviously significantly depends on this steel grade. For a more adequate justification of the evolution of the oxide film, a semi-empirical model is proposed for using the empirical parameterization of the parabolic constant not only in the equation for changing the thickness of the oxide film but also in the mass balance equation associated with it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.