Abstract
Single-crystalline KY1-x-y-zGdxLuyYbz(WO4)2 layers are grown onto undoped KY(WO4)2 substrates by liquid-phase epitaxy. The purpose of co-doping the KY(WO4)2 layer with suitable fractions of Gd3+ and Lu3+ is to achieve lattice-matched layers that allow us to engineer a high refractive-index contrast between waveguiding layer and substrate for obtaining tight optical mode confinement and simultaneously accommodate a large range of Yb3+ doping concentrations by replacing Lu3+ ions of similar ionic radius for a variety of optical amplifier or laser applications. Crack-free layers, up to a maximum lattice mismatch of ~0.08 %, are grown with systematic variations of Y3+, Gd3+, Lu3+, and Yb3+ concentrations, their refractive indices are measured at several wavelengths, and Sellmeier dispersion curves are derived. The influence of co-doping on the spectroscopy of Yb3+ is investigated. As evidenced by the experimental results, the lattice constants, refractive indices, and transition cross-sections of Yb3+ in these co-doped layers can be approximated with good accuracy by weighted averages of data from the pure compounds. The obtained information is exploited to fabricate a twofold refractive-index-engineered sample consisting of a highly Yb3+-doped tapered channel waveguide embedded in a passive planar waveguide, and a cladding-side-pumped channel waveguide laser is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.