Abstract

Stabilized cat codes can provide a biased noise channel with a set of bias-preserving (BP) gates, which can significantly reduce the resource overhead for fault-tolerant quantum computing. All existing schemes of BP gates, however, require adiabatic quantum evolution, with performance limited by excitation loss and nonadiabatic errors during the adiabatic gates. In this paper, we apply a derivative-based leakage-suppression technique to overcome nonadiabatic errors, so that we can implement fast BP gates on Kerr-cat qubits with improved gate fidelity while maintaining high noise bias. When applied to concatenated quantum error correction, the fast BP gates not only can improve the logical error rate but also can reduce resource overhead, which enables more efficient implementation of fault-tolerant quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.