Abstract

The inexpensive agricultural fatty by-products could be usefully converted to polyhydroxyalkanoates (PHAs) by properly selected and/or developed microbes. Delftia acidovorans DSM39 is a well-known producer of PHAs with high molar fractions of 4-hydroxybutyrate (4HB), but unable to grow on fatty substrates. The aim of this study was to construct a recombinant strain of D. acidovorans DSM39 using fats-containing waste such as udder, lard and tallow, to produce PHAs. The lipC and lipH genes of Pseudomonas stutzeri BT3, proficient lipolytic isolate, were successfully co-expressed into D. acidovorans DSM39 and the resulting recombinant strain displayed high extracellular enzymatic activity on corn oil. The PHAs production from corn oil achieved high levels (26% of cell dry weight, with about 7% of 4HB). Surprisingly, the recombinant strain produced greater values directly from slaughterhouse residues such as udder and lard (43 and 39%, respectively, with almost 7% of 4HB).Moreover, this work proved the ability of the recombinant D. acidovorans strain to produce PHAs with significant percentage of 4HB, without the supplementation of any precursor in the liquid broth. This research paves the way to the efficient one-step conversion of fatty residues into PHAs having valuable properties exploitable in several medical and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.