Abstract

Biological reduction of soluble uranium from U(VI) to insoluble U(IV) coupled to the oxidation of an electron donor (hydrogen or organic compounds) is a potentially cost-efficient way to reduce the U concentrations in contaminated waters to below regulatory limits. A variety of microorganisms originating from both U contaminated and non-contaminated environments have demonstrated U(VI) reduction capacity under anaerobic conditions. Bioreduction of U(VI) is considered especially promising for in situ remediation, where the activity of indigenous microorganisms is stimulated by supplying a suitable electron donor to the subsurface to contain U contamination to a specific location in a sparingly soluble form. Less studied microbial biofilm-based bioreactors and bioelectrochemical systems have also shown potential for efficient U(VI) reduction to remove U from contaminated water streams. This review compares the advantages and challenges of U(VI)-reducing in situ remediation processes, bioreactors and bioelectrochemical systems. In addition, the current knowledge of U(VI) bioreduction mechanisms and factors affecting U(VI) reduction kinetics (e.g. pH, temperature, and the chemical composition of the contaminated water) are discussed, as both of these aspects are important in designing efficient remediation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.