Abstract

An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding the "valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.