Abstract

AbstractBioinspired nanochannels for smart mass transport control have shown great potential for various applications in nanofluids, biosensing, and separation. Here, a nanochannel‐based smart responsive platform exhibiting high formaldehyde (HCHO) sensitivity is designed and successfully fabricated by functionalizing the inner pore surface with ethylenediamine (EDA). By employing the nucleophilic addition reaction between HCHO and EDA immobilized on the nanochannels, the artificial nanochannels can switch from an open state to a closed state with the increase in HCHO. This is because the surface charge density and the wettability of the nanochannels change along with the HCHO immobilization. Meanwhile, the EDA‐functionalized platform can hold a large amount of HCHO due to the abundant nanochannels of the membrane, so it presents a significant ability to remove HCHO in complex matrices. Also, the cultivation of mesenchymal stem cells in media containing HCHO can achieve excellent vitality in the presence of the EDA‐functionalized nanochannels materials. This work paves an avenue for designing and developing bioinspired nanochannel based platform for harmful compounds detection and removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.