Abstract

Inverted perovskite solar cells incorporating RF sputtered NiO thin films as a hole transport layer and window layer are demonstrated. The electrical and optical properties of the NiO thin films are engineered using varied sputtering conditions. The localized states within bandgap owing to its crystal disorder and nonstoichiometric features affect the transmittance and the optical bandgap of the NiO thin films which in turn influences the Jsc of the perovskite solar cells. In addition, the electrical properties of the NiO thin films can be also varied during sputtering condition affecting the concentration of nickel vacancies and the resulting hole concentration. The conductivity largely originates from the hole concentration relating to the density of states in the NiO thin films which influence the fill factor (FF) of the solar cells. The solar cells fabricated with the NiO thin films made at 4 Pa of deposition pressure show highest performance owing to excellent transmittance and wider bandgap along with moderate conductivity. With further optimization, the perovskite solar cells exhibit ~20 mA/cm2 of Jsc and a 12.4% PCE (11.3% of averaged PCE).

Highlights

  • The potential for highly0. efficient light-to-electricity conversion by organometal halide Perovskite solar cells has generated great interest for photovoltaic research since the seminal research done by Miyasaka group in 20091

  • The nickel oxide (NiO) thin films prepared under 4 Pa of deposition pressure exhibit excellent optical properties and moderate electrical properties and act as efficient hole transport layers (HTL) and window layer simultaneously

  • X-ray diffraction (XRD) patterns were obtained with the extended deposition time to acquire 150 nm of thickness because all 20 min (20 M) samples exhibited no distinguishable peak from indium tin oxide (ITO) substrate due to thin thickness (≤73 nm) (Figure S2)

Read more

Summary

Introduction

The potential for highly0. efficient light-to-electricity conversion by organometal halide Perovskite solar cells has generated great interest for photovoltaic research since the seminal research done by Miyasaka group in 20091. The n-i-p structure is vulnerable to strong hysteresis originating from several possibilities such as defect density, ferroelectricity, ion migration and/or unbalanced carrier diffusion[4,10,11,12] In this context, an inverted structure adopting different hole transport materials such as poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate) (PEDOT:PSS) and nickel oxide (NiO) might provide an improved alternative. The NiO thin films prepared under 4 Pa of deposition pressure exhibit excellent optical properties and moderate electrical properties and act as efficient HTL and window layer simultaneously. The conversion efficiency of the inverted perovskite solar cells reached to 12.4% (11.3% of averaged PCE) owing to highly transparent and moderately conductive NiO thin films prepared by engineered deposition condition

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.