Abstract

Neural stem cells (NSCs) have the potential to proliferate and differentiate into functional neurons, heightening their potential use for therapeutic applications. This review explores bioengineered systems which recapitulate NSC niche cell-cell and cell-matrix interactions. Delivery of NSCs to the cytotoxic injured brain is limited by low cell survival rates post-transplantation and poor maintenance of native niche bioactive components. The use of biomaterial platforms can mimic in vivo the environment of the two germinal areas of the adult brain in which NSCs thrive. An environmental mimic that includes extracellular proteins and moieties, along with appropriate biomechanical cues has recently demonstrated promising results in enhancing neurogenesis, aiding the production of a bioengineered niche. Biocomposition, biomechanics, and biostructure can be manipulated through engineered platforms to re-create the biofunctionality of an NSC niche. Upon transplantation and delivery with biomimetic scaffolds, NSCs show potential to promote functional recovery and rebuild neural circuitry post neurological trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.