Abstract
AbstractCell-cell contact is required for efficient transmission of human T-lymphotropic virus type 1 (HTLV-910101). An HTLV-1–infected cell polarizes its microtubule-organizing center (MTOC) toward the cell-cell junction; HTLV-1 core (Gag) complexes and the HTLV-1 genome accumulate at the point of contact and are then transferred to the uninfected cell. However, the mechanisms involved in this cytoskeletal polarization and transport of HTLV-1 complexes are unknown. Here, we tested the hypothesis that engagement of a specific T-cell surface ligand is synergistic with HTLV-1 infection in causing polarization of the MTOC to the cell contact region. We show that antibodies to intercellular adhesion molecule-1 (ICAM-1; CD54) caused MTOC polarization at a higher frequency in HTLV-1–infected cells. ICAM-1 is upregulated on HTLV-1–infected cells, and, in turn, ICAM-1 on the cell surface upregulates HTLV-1 gene expression. We propose that a positive feedback loop involving ICAM-1 and HTLV-1 Tax protein facilitates the formation of the virologic synapse and contributes to the T-cell tropism of HTLV-1. In contrast, MTOC polarization induced in T cells by antibodies to CD3 or CD28 was significantly inhibited by HTLV-1 infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.