Abstract
Iterative real-time optimization schemes that employ modifier adaptation add bias and gradient correction terms to the model that is used for optimization. These affine corrections lead to meeting the first-order necessary conditions of optimality of the plant despite plant-model mismatch. However, since the added terms do not include curvature information, satisfaction of the second-order sufficient conditions of optimality is not guaranteed, and the model might be deemed inadequate for optimization. In the context of modifier adaptation, this paper proposes to include a dedicated parameter-estimation step such that also the second-order optimality conditions are met at the plant optimum. In addition, we propose a procedure to select the best parameters to adapt based on a local sensitivity analysis. A simulation study dealing with product maximization in a fed-batch reactor demonstrates that the proposed scheme can both select the right parameters and determine their values such that modifier adaptation can drive the plant to optimality fast and without oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.