Abstract

Energy transfer dynamics of formate (HCOOa ) decomposition on a Cu(110) surface has been studied by measuring the angle-resolved intensity and translational energy distributions of CO2 emitted from the surface in a steady-state reaction of HCOOH and O2 . The angular distribution of CO2 shows a sharp collimation with the direction perpendicular to the surface, as represented by cosn θ (n=6). The mean translational energy of CO2 is measured to be as low as 100 meV and is independent of the surface temperature (Ts ). These results clearly indicate that the decomposition of formate is a thermal non-equilibrium process in which a large amount of energy released by the decomposition reaction of formate is transformed into the internal energies of CO2 molecules. The thermal non-equilibrium features observed in the dynamics of formate decomposition support the proposed Eley-Rideal (ER)-type mechanism for formate synthesis on copper catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.