Abstract

Abstract 0.5Bi 0·5 Na 0·5 TiO 3 -0.5SrTiO 3 -x wt% MgO (x = 0, 0.5, 1.0, 1.5, 2.0, 3.0) ceramics were fabricated via solid-state method. The effect of MgO doped on energy storage properties, dielectric performance, phase structure and microstructures of 0.5Bi 0·5 Na 0·5 TiO 3 -0.5SrTiO 3 (BNST) ceramics were studied systemically. The Mg 2+ substituted Ti 4+ site in BNST, which was confirmed by X-ray diffraction (XRD) result. The scanning electron microscope (SEM) images show that all the ceramic samples exhibit uniform and compact morphologies. The temperature dependent permittivity exhibits frequency dispersion, indicating that the ceramic samples are typical relaxor ferroelectrics. It was found that MgO doped BNST can significant improve the breakdown strength (E b ) of samples from 109 kV/cm to 227 kV/cm, which results in a great enhancement on energy storage density. The sample of x = 3.0 has the largest energy storage density (2.17 J/cm 3 ), which is twice as much as the BNST. Consequently, we consider that MgO-doped BNST ceramics are able to be a promising candidate in the field of pulsed-power devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.