Abstract

Polymer-based energy storage materials are widely utilized in the fields of electrical and electronics due to their high-power density and excellent charge-discharge efficiency. In this study, polyetherimide (PEI) composite films with outstanding energy storage properties were prepared by growing an inorganic barrier layer of boron nitride (BN) on the surface of PEI films through the in situ chemical vapor deposition (PECVD) method. The effects of BN deposition time on the dielectric properties, leakage current density, and energy storage properties of the composite films were investigated. The results reveal that the BN inorganic barrier layer, prepared by the PECVD method, demonstrates excellent interfacial compatibility with the PEI polymer matrix and forms a densely deposited layer. The BN inorganic barrier layer effectively suppresses carrier injection at the electrode, reduces the current density inside the PEI composite film, and improves the breakdown strength of the composite film. The composite film exhibits optimal performance when BN is deposited for 20 min. At an electric field strength of 660 MV/m, the energy storage density of the composite film reaches 6.08 J/cm3, which is 1.53 J/cm3 higher than that of pure PEI, while maintaining a charge-discharge efficiency of 90.43%. The findings of this study provide valuable theoretical support for the design of polymer-based energy storage materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.