Abstract

A building energy simulation study is carried out to analyze the performance of a triple-hybrid single-effect vapor absorption cooling system (VACS) operated by solar, natural gas, and auxiliary electricity-based cogeneration. A high capacity small office building subjected to different climatic conditions is considered. The system is designed to continuously maintain a specified building comfort level throughout the year under diverse environmental conditions. Simulations are done at different generator temperatures to investigate the performance in terms of total annual electric energy consumption, heating energy, and the coefficient of performance (COP). The performance of the present VACS is compared with the conventional compression-based system, which demonstrates the electric energy and cost saving potentials of the proposed VACS. Simulation outcomes are well-validated against benchmark data from national renewable energy laboratory and energy conservation building code. Interestingly, it is found that beyond a certain collector area, surplus energy savings can be acquired with the present triple-hybrid VACS as compared to the compression-based cooling. Results also show that COP of the simulated system is in line with experimental values available in the literature. Finally, recommendations are given to operate the complete system on solar and biomass resources, which provide encouraging opportunity for agriculture-based countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.