Abstract

This study presents an optimization algorithm for Model Predictive Control (MPC) of the HVAC systems in multi-family residential buildings assessing the performance of four objective functions. Implemented in C++, using the free OR-Tools optimization library, the model is formulated a Mixed Integer-Linear Programming (MILP) problem. The study analyses the results of tests conducted on a 20-dwelling block in Switzerland across various weather and occupancy conditions, resulting in a parametric study of 64 cases.The models developed for the MPC are Grey-box type for the interconnected energy systems: the building, thermal storage tanks, a heat pump, the ventilation system and PV collectors, highlighting a radiant wall heating system integrated into the building facade. The tanks and the heat pump models were informed with manufacturer data, while for the building a R3C3 thermal-electrical equivalent model was developed, calibrated using TRNSYS simulations with a root mean square error of 1.7%.Findings demonstrate how the algorithm optimizes the operation according to the desired criteria, while ensuring indoor comfort with a 15-minute time resolution. The time execution of the majority of cases is under 3 min in a low-specs computer, affirming its practical viability for real-world implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.