Abstract

The ability of brief hypothermic reperfusion (HtR) to restore hepatic energy metabolism following periods of cold hypoxic preservation was studied in isolated rat livers after storage times of 5, 10, and 24 h. In addition, investigations were performed on the effects of HtR used to restore liver oxidative metabolism in the middle of a prolonged (24 h) hypoxic preservation period. A histidine–lactobionate–raffinose solution was used for the initial cold portal flush in all groups. Results showed that cold hypoxia for either 5 or 10 h yielded livers capable of similar recoveries of ATP, energy charge, and total adenine nucleotides, but that HtR after 24 h cold preservation resulted in reduced regeneration of ATP, a lower energy charge, and a fall in tissue adenine nucleotides. When livers were stored for 24 h but subjected to brief HtR after either 5 or 10 h before return to hypoxic storage, improved recoveries of the energy metabolites were seen over those recorded after 24 h hypoxia alone. The fact that these improvements were not due to an improved supply of adenine nucleotide precursors was demonstrated by studying groups which were given HtR with perfusate containing precursors of adenine nucleotides (adenosine, adenine, and inosine) after 24 h cold hypoxia. These data are consistent with the hypothesis that poor metabolic recovery after long-term hepatic cold preservation results more from decreased mitochondrial oxidative phosphorylation than from a lack of precursors for adenine nucleotide resynthesis. In addition, restoring oxidative metabolism at hypothermia for brief periods can to some extent protect final metabolic status after prolonged storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.