Abstract

Fuel cell vehicles have been widely used in the commercial vehicle field due to their advantages of high efficiency, non-pollution and long range. In order to further improve the fuel economy of fuel cell commercial vehicles under complex working conditions, this paper proposes an adaptive rule-based energy management strategy for fuel cell commercial vehicles. First, the nine typical working conditions of commercial vehicles are classified into three categories of low speed, medium speed and high speed by principal component analysis and the K-means algorithm. Then, the crawfish optimization algorithm is used to optimize the back propagation neural network recognizer to improve the recognition accuracy and optimize the rule-based energy management strategy under the three working conditions to obtain the optimal threshold. Finally, under WTVC and combined conditions, the optimized recognizer is used to identify the conditions in real time and call the optimal rule threshold, and the sliding average filter is used to filter the fuel cell output power in real time, which finally realizes the adaptive control. The simulation results show that compared with the conventional rule-based energy management strategy, the number of fuel cell start–stops is reduced. The equivalent hydrogen consumption is reduced by 7.04% and 4.76%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.