Abstract

The distribution network operator is usually responsible for improvement of efficiency and reliability of the network. This paper proposes a framework to demonstrate the impact of renewable energy sources (RESs), energy storage systems (ESSs), demand response (DR) and reconfiguration on the optimal sharing of energy. The proposed model determines the optimal locations of RESs, ESSs and DR in the distribution network to minimize simultaneously the cost of energy procurement and energy not supplied. A multi-objective optimization problem is formulated with a mixed-integer second-order cone programming model and ε-constraint method is used to generate Pareto optimal solutions. The network reconfiguration is also considered to optimize the power flow by changing the network topology. The proposed model is implemented on the IEEE standard 33-bus radial test system, and solved by General Algebraic Modeling System (GAMS) optimization software. According to the simulation results, the proposed framework is beneficial both from the reliability and economic perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.