Abstract

PurposeOn average, a medium-sized satellite consist of almost 500 sensors where powering these sensors in space in such an unreachable environment is critical. Backing this, a compact energy harvester for powering up distant sensors is discussed here is the purpose of this paper. This is in line with the geostationary satellite-powered using the available electromagnetic energy on the satellite panels in space.Design/methodology/approachThe designed rectenna makes use of a compact wideband receiving antenna operating at the targeted frequency band from 8 to 18 GHz. It also consists of a simple dual diode rectifier topology with a matching circuit, bandpass filter and a resistive load to convert the received radio frequency energy into usable direct current (DC) voltage.FindingsThe rectenna measurement is performed using three different configuration setups. This shows that a maximum DC voltage of 1.8 V and 5-10 mV is harvested from rectifier and rectenna (includes antenna and rectifier) when 20 dBm power is transmitted from the transmitting antenna operating at X and Ku band. This makes the rectenna feasible to power wireless sensors in a structural health monitoring system.Originality/valueThe measurements are performed by considering a real-time environment in space in terms of the distance between the transmitting and receiving antenna, which depends on the far-field of the transmitting antenna in a satellite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.