Abstract
We report on the band gap opening and electronic structures of graphene nanomeshes (GNMs), the defected graphene containing a high-density array of nanoscale holes, from first-principles calculations. As expected, quantum confinement at the GNM necks leads to a sizable band gap; however, surprisingly, the appearance of a gap depends sensitively on the hole arrangement and periodicity. For the simplest hexagonal zigzag-edged holes passivated by hydrogen, two-thirds of GNMs remain semimetallic while the rest are semiconductors. Furthermore, we show that the energy gap opening in GNM results from the combination of quantum confinement and the periodic perturbation potential due to perforation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.