Abstract

We analyze the exciton dynamics in Photosystem I from Thermosynechococcus elongatus using the distributed memory implementation of the hierarchical equation of motion (DM-HEOM) for the 96 Chlorophylls in the monomeric unit. The exciton-system parameters are taken from a first principles calculation. A comparison of the exact results with Förster rates and Markovian approximations allows one to validate the exciton transfer times within the complex and to identify deviations from approximative theories. We show the optical absorption, linear, and circular dichroism spectra obtained with DM-HEOM and compare them to experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.