Abstract

A key quantity characterizing a time-periodically forced quantum system coupled to a heat bath is the energy flowing in the steady state through the system into the bath, where it is dissipated. We derive a general expression which allows one to compute this energy dissipation rate for a heat bath consisting of a large number of harmonic oscillators and work out two analytically solvable model examples. In particular, we distinguish between genuine transitions effectuating a change of the systems's Floquet state and pseudotransitions preserving that state; the latter are shown to yield an important contribution to the total dissipation rate. Our results suggest possible driving-mediated heating and cooling schemes on the quantum level. They also indicate that a driven system does not necessarily occupy only a single Floquet state when in contact with a zero-temperature bath.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.