Journal of Thermal Analysis and Calorimetry

Energy, exergy, and sensitivity analyses of a new integrated system for generation of liquid methanol, liquefied natural gas, and crude helium using organic Rankine cycle, and solar collectors

Publication Date Mar 13, 2021


The increasing growth of helium consumption in industries and the limited resources of this element are the challenges that industries will face in the future. One way to reduce the energy consumption in producing crude helium is to integrate it with low-temperature cycles. Also, using solar energy as a source of energy production in areas that receive adequate solar energy is an important strategy for energy supply in terms of environmental compatibility and sustainable development. In this paper, a novel integrated structure for producing liquid methanol, liquefied natural gas, and crude helium gas using the process of separating helium from natural gas, methanol synthesis process, organic Rankine cycle, and solar dish collectors is developed and analyzed. This hybrid system produces 3590 kmol h−1 liquid methanol, 3590 kmol h−1 liquefied natural gas, and 18.91 kmol h−1 crude helium. The feed gas extracted from the process of separating helium from natural gas is fed to the steam-natural gas reforming unit, which produces syngas with an amount of 16,015 kmol h−1. To supply the input heat to the reforming, solar dish collectors with the climatic conditions of Tehran in Iran are used. The produced syngas along with carbon dioxide is fed into the methanol synthesis unit. The energy and exergy efficiencies of the developed integrated structure are 88.48% and 93.79%, respectively. The exergy analysis of the integrated structure shows that the maximum exergy destruction corresponds to the heat exchangers (56.23%) and reactors (13...


Solar Collectors Organic Rankine Cycle Solar Dish Collectors Methanol Synthesis Unit Liquid Methanol Source Of Energy Production Methanol Synthesis Process Low-temperature Cycles Natural Gas Consumption In Industries

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.