Abstract

Prolonging a wireless sensor network’s lifetime is closely related to energy consumption and particularly the energy hole problem, where sensor nodes close to the sink consume a considerable amount of their energy for relaying purposes. To tackle the energy hole problem’s effects, this paper proposes an analytical model for analyzing the available energy in the network. The next step is to analytically model the overall energy consumption as a k-median facility location problem, its solution corresponding to the location of k sinks in the network.As analytically shown, when k sinks are placed according to the solution of the previous facility location problem, then the overall energy consumption is minimized, resulting in a higher energy-saving system. Thus, the saved energy can be further utilized, e.g., to extend the network’s lifetime and support modern replenishing techniques such as energy harvesting and battery recharging.Simulation results validate the analytical model that is the basis of the analysis and confirm the results with respect to the available energy in the network. In particular, significant energy savings are observed when the analytical results are applied, thus resulting in better energy utilization and subsequent network lifetime increment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.