Abstract

In this paper, we study the energy efficiency (EE) maximization problem for an uplink millimeter wave massive multiple-input multiple-output system with non-orthogonal multiple access (NOMA). Multiple two-user clusters are formed according to their channel correlation and gain difference, and NOMA is applied within each cluster. Then, a hybrid analog-digital beamforming scheme is designed to lower the number of radio frequency chains at the base station (BS). On this basis, we formulate a power allocation (PA) problem to maximize the EE under users' quality of service requirements. An iterative algorithm is proposed to obtain the PA. Moreover, an enhanced NOMA scheme is also proposed, by exploiting the global information at the BS. Numerical results show that the proposed NOMA schemes achieve superior EE when compared with the conventional orthogonal multiple access scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.