Abstract

The purpose of this article is to propose Stability-based Energy-Efficient Link-State Hybrid Routing (S-ELHR), a low latency routing protocol that aims to provide a stable mechanism for routing in unmanned aerial vehicles (UAV). The S-ELHR protocol selects a number of network nodes to create a Connected Dominating Set (CDS) using a parameter known as the Stability Metric (SM). The SM considers the node’s energy usage, connectivity time, and node’s degree. Only the highest SM nodes are chosen to form CDS. Each node declares a Willingness to indicate that it is prepared to serve as a relay for its neighbors, by employing its own energy state. S-ELHR is a hybrid protocol that stores only partial topological information and routing tables on CDS nodes. Instead of relying on the routing information at each intermediary node, it uses source routing, in which a route is generated on-demand, and data packets contain the addresses of the nodes the packet will transit. A route recovery technique is additionally utilized, which first locates a new route to the destination before forwarding packets along it. Through simulation for various network sizes and mobility speeds, the efficiency of S-ELHR is shown. The findings demonstrate that S-ELHR performs better than Optimized Link State Routing (OLSR) and Energy Enhanced OLSR (EE-OLSR) in terms of packet delivery ratio, end-to-end delay, and energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.