Abstract

This study introduces an innovative seabed substrate detection model that harnesses the complementary strengths of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) to analyze sonar data with a focus on energy efficiency. The model addresses the challenges of underwater sensing and imaging, including variable lighting conditions, backscattering effects, and acoustic sensor limitations, while minimizing energy consumption. By leveraging advanced machine learning techniques, the proposed model aims to enhance seabed classification accuracy, a crucial aspect for marine operations, ecological studies, and energy-intensive underwater applications.The introduced ShuffleNet-DSE architecture demonstrates significant improvements in both accuracy and stability for seabed sediment image classification, while maintaining energy-efficient performance. This robust tool offers a valuable asset for underwater exploration, research, and monitoring efforts, especially in environments where energy resources are limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.