Abstract

Electrically conductive concrete (ECON) heated pavement system (HPS) is a newly developed clean technology to reduce the use of polluting chemicals for removal of snow and ice. This technology requires further comprehensive studies for achieving an energy-efficient design. To construct an energy-efficient system, ECON HPS design includes determining the most appropriate configuration of electrodes embedded in the ECON layer. The spacing, shape and dimensions of these electrodes are important design factors impacting the thermal and energy performance of the system. While field tests are resource-intensive, the use of numerical modeling can complement such experimental tests to provide a better overall understanding of the technology’s behavior. In this paper, the thermal and energy performance of ECON HPS is investigated through considering various system configuration designs, with an experimentally validated finite element model. A performance index is defined for comparing both thermal and energy performance of the configurations to obtain an energy-efficient design. The results indicate that a configuration with six circular electrodes at 100 cm spacing exhibited the best performance index and the highest energy efficiency. Since a test section with higher performance index would be capable of achieving a higher average surface temperature for the same energy input, such a section would have higher efficiency compared to other sections evaluated. This analysis results in narrowing down the ECON HPS’s configuration design options before performing experimental tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.