Abstract

In this paper, the energy effect of the laser vertical metallic link is investigated from a microscopic point of view through experimental observations and simulations. Sample structures that were irradiated under different laser energies were cross-sectioned and observed using a FIB/SEM dual-beam system. Failure criterion at the high energy level was defined by excessive material loss in the lower metal (metal 1) and passivation cracking. Micro-images also suggest that, for an optimal link metal (metal 2) opening should be larger than the lower metal linewidth considering the dielectric-step-induced lens effect. Taking into account both measured electrical resistance and observed voids in the lower metal, the normalized energy process window is defined to be the absolute energy range divided by the average energy. For the structures with 1-, 2-, 3-, and 4-/spl mu/m lower metal linewidths, the relative process windows are 0.83, 0.87, 0.9, and 0.96, respectively. Simulations also revealed consistent results with the experimental observations, which is a monotonically decreasing trend of relative energy process windows for more scaled links. A simple equation to evaluate the spot size of the laser beam for various link structures is presented. These results demonstrate the application of commercially viable vertical linking technology to VLSI applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.