Abstract

Ocean current data for nearly 3 months in the South China Sea (SCS), combined with the NCEP/NCAR reanalysis wind data, are analyzed. The results indicate that the wind energy enters the upper mixed layer in a wide continuous frequency band. In addition, the interaction between the low-frequency wind anomaly and the low-frequency current anomaly is the most 'effective' way for the energy input from the wind to the upper ocean. However, only the inertial and the near inertial energy propagate downwards through the upper mixed layer. The downward-propagating energy is distributed into the barotropic currents, the baroclinic currents and each mode of the baroclinic currents following the normal distributions. The energy change ratios between the barotropic motion to the baroclinic motion induced by the wind present a normal distribution of N(0.0242, 0.3947). The energy change ratios of the first 4 baroclinic modes to the whole baroclinic currents also follow the normal distributions. The first baroclinic mode follow; N (0.2628, 0.1872), the second N (0.1979, 0.1504), the third N (0.1331, 0.1633), and the fourth N (0.0650, 0.1540), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.