Abstract

We determined correction factors for absorbed dose energy dependence and intrinsic energy dependence for measurements of absorbed dose to water around an 192 Ir source using a radiophotoluminescent glass dosimeter (RPLD) calibrated with a 4-MV photon beam. The ratio of the absorbed dose to the water and the average absorbed dose to RPLD for the 192 Ir beam relative to the same ratio in a 4MV photon beam defines the absorbed dose energy dependence and was determined at distances of 2-10cm (at intervals of 1cm) from the 192 Ir source in a water phantom using the egs_chamber user code. The RPLD was calibrated to measure absorbed dose to water, Dw , in a 4MV photon beam using an ionization chamber, which was also used to measure absorbed dose to water, Dw , in a water phantom using the 192 Ir source. The detector response radiophotoluminescence (RPL signal per average absorbed dose in the detector) in the 192 Ir beam relative to that in the 4MV photon beam (the relative intrinsic efficiency) was determined experimentally. Finally, the beam quality correction factor was obtained as the quotient between the absorbed dose energy dependence and the relative intrinsic efficiency and corrects for the difference between the beam quality Q0 used at calibration and the beam quality Q used in the measurements. The relative dose ratio of the average absorbed dose to water relative to RPLD ranged from 0.930 to 0.746, and the beam quality correction factor ranged from 0.999 to 0.794 for distances of 2-10cm from the 192 Ir source. The relative detector response to an 192 Ir source and a 4-MV photon beam was 0.930, and it did not vary significantly with distance. These results demonstrate that corrections for absorbed dose energy dependence and intrinsic energy dependence are required when using an RPLD to measure with sources different from the reference source providing the primary calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.