Abstract

SummaryThe H∞ framework provides an efficient and systemic method for the design of controllers for both linear and nonlinear systems. In the nonlinear controller synthesis, however, the limitation of this method is usually associated with the existence of a solution to the Hamilton–Jacobi–Isaac (HJI) equation. In this paper, an innovative energy compensation‐based approach to the solution of the HJI equations is presented and compared with the existing methods relying on Taylor series expansion. This new approach provides an efficient methodology that ensures the existence of a solution to the HJI equation. Numerical application to spacecraft attitude control is presented to validate the developments. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.