Abstract
The first complete estimation of the compressible energy cascade rate |ϵ_{C}| at magnetohydrodynamic (MHD) and subion scales is obtained in Earth's magnetosheath using Magnetospheric MultiScale spacecraft data and an exact law derived recently for compressible Hall MHD turbulence. A multispacecraft technique is used to compute the velocity and magnetic gradients, and then all the correlation functions involved in the exact relation. It is shown that when the density fluctuations are relatively small, |ϵ_{C}| identifies well with its incompressible analog |ϵ_{I}| at MHD scales but becomes much larger than |ϵ_{I}| at subion scales. For larger density fluctuations, |ϵ_{C}| is larger than |ϵ_{I}| at every scale with a value significantly higher than for smaller density fluctuations. Our study reveals also that for both small and large density fluctuations, the nonflux terms remain always negligible with respect to the flux terms and that the major contribution to |ϵ_{C}| at subion scales comes from the compressible Hall flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.