Abstract

We compute the total energy and the spatial momentum of four charged rotating (Kerr—Newman) frames by using the gravitational energy—momentum 3-form within the framework of the tetrad formulation of the general relativity theory. We show how the effect of the inertial always makes the total energy divergent. We use a natural regularization method, which yields the physical value for the total energy of the system. We show how the regularization method works on a number of different rotating frames that are related to each other by the local Lorentz transformation. We also show that the inertial has no effect on the spatial momentum components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.