Abstract
The stability of charged particle motion in a uniform magnetic field with an added spatially uniform transverse rotating magnetic field (RMF) is studied analytically. It is found that the stability diagram of a single particle's orbit depends critically on the chosen boundary conditions. We show that for many boundary conditions and wide regions in the parameter space, RMFs oscillating far below the cyclotron frequency can cause linear instabilities in the motion which break μ invariance and energize particles. Such energization may appear at odds with the adiabatic invariance of μ; however, adiabatic invariance is an asymptotic result and does not preclude such heating by magnetic fields oscillating at slow frequencies. This mechanism may contribute to heating in the edge plasma of field-reversed configurations (FRCs) in rotamak-FRC experiments. Furthermore, these RMF-driven instabilities may significantly enhance azimuthal current drive during the formation of FRCs in such devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.