Abstract

In this work, high DeltamicroH+-dependent succinate oxidase activity has been demonstrated for the first time with membrane vesicles isolated from Bacillus subtilis. The maximal specific rate of succinate oxidation by coupled inside-out membrane vesicles isolated from a B. subtilis strain overproducing succinate:menaquinone oxidoreductase approaches the specific rate observed with the intact cells. Deenergization of the membrane vesicles with ionophores or alamethicin brings about an almost complete inhibition of succinate oxidation. An apparent K(m) for succinate during the energy-dependent succinate oxidase activity of the vesicles (2.2 mM) is higher by an order of magnitude than the K(m) value measured for the energy-independent reduction of 2,6-dichlorophenol indophenol. The data reveal critical importance of DeltamicroH+ for maintaining active electron transfer by succinate:menaquinone oxidoreductase. The role of DeltamicroH+ might consist in providing energy for thermodynamically unfavorable menaquinone reduction by succinate by virtue of transmembrane electron transport within the enzyme down the electric field; alternatively, DeltamicroH+ could play a regulatory role by maintaining the electroneutrally operating enzyme in a catalytically active conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.