Abstract

It has been proposed by Marian et al. [1] that a [001] interstitial-type dislocation loop can be formed in body-centered cubic iron via the collision between a 1/2[111] loop and 1/ 2[111] loop, which undergo one-dimensional glide diffusion, and the subsequent shear reaction. However, the formation of [001] loops through this reaction has not been reproduced by other works even though the two 1/2<111> loops collided with each other. In the present paper, the origin of the difficulty in this reaction is discussed within the framework of isotropic elasticity theory. The sign of the driving force for the reaction is heavily dependent on the reaction path. The two 1/2<111> loops colliding to form a [110] junction can transform to a single [001] loop when a shear loop generated within the 1/2[111] loop propagates in sync with the other shear loop within the 1/ 2[111] loop. However, unsynchronized motion of the two shear loops significantly suppresses the propagation of the shear loops, which might be caused by the thermal fluctuation at finite temperatures. This will be one of the origins of the difficulty in the formation of [001] loops through the collision between the two 1/2<111> loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.