Abstract

Recently, Weisbecker and Goswami presented the first comprehensive comparative analysis of brain size, metabolic rate, and development periods in marsupial mammals. In this paper, a strictly energetic perspective is applied to identify general mammalian correlates of brain size evolution. In both marsupials and placentals, the duration or intensity of maternal investment is a key correlate of relative brain size, but here I show that allomaternal energy subsidies may also play a role. In marsupials, an energetic constraint on brain size in adults is only revealed if we consider both metabolic and reproductive rates simultaneously, because a strong trade-off between encephalization and offspring production masks the positive correlation between basal metabolic rate and brain size in a bivariate comparison. In conclusion, starting from an energetic perspective is warranted to elucidate relations between ecology, social systems, life history, and brain size in all mammals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.