Abstract

Molecular dynamics simulations of 50 Fe grain boundaries were used to understand their interaction with vacancies and self-interstitial atoms at all atomic positions within 20 Angstroms of the boundary, which is important for designing radiation-resistant polycrystalline materials. Site-to-site variation within the boundary of both vacancy and self-interstitial formation energies is substantial, with the majority of sites having lower formation energies than in the bulk. Comparing the vacancy and self-interstitial atom binding energies for each site shows that there is an energetic driving force for interstitials to preferentially bind to grain boundary sites over vacancies. Furthermore, these results provide a valuable dataset for quantifying uncertainty bounds for various grain boundary types at the nanoscale, which can be propagated to higher scale simulations of microstructure evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.