Abstract

Free energy, widely used as a measure of turbulence intensity in weakly collisional plasmas, has been recently found to be a suitable basis to describe both linear and nonlinear growth in a wide class gyrokinetic systems. The simplicity afforded by this approach is accompanied by some drawbacks, notably the lack of any explicit treatment of wave–particle effects, which makes the theory unable to describe things like stability thresholds or dependence on the geometry of the background magnetic field. As a step toward overcoming these limitations, we propose an extension of the theory based on a generalization of the free energy. With this, it is demonstrated that resonance effects are recovered, and the bounds on growth are significantly reduced. The simplicity and efficient computation of the associated ‘optimal’ growth rates makes the theory potentially applicable to stellarator optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.