Abstract

Inflammatory responses of human peripheral blood monocytes to the Gram-negative endotoxin lipopolysaccharide (LPS) are enhanced by structurally diverse substances, such as anionic polysaccharides or cationic polypeptides. Only a few substances are known to effectively blunt LPS-induced monocyte activation. We now show that synthetic poly- L-histidine (Hn) binds to LPS and abrogates the release of the proinflammatory cytokine interleukin-8 (IL-8) in LPS-stimulated human whole blood. LPS-induced stimulation of monocytes was strictly pH-dependent with only minor amounts of IL-8 secreted in acidic blood. Maximum levels of IL-8 secretion occurred at a strongly basic pH. Hn inhibition of the release of IL-8 from LPS-stimulated monocytes was observed under acidic, neutral and physiological conditions. With increasing alkalosis, the effectiveness of Hn was gradually lost, suggesting that protonated, but not deprotonated, Hn was effective in inhibiting LPS-induced monocyte responses. Histidine-rich protein 2 from the malaria parasite, Plasmodium falciparum, inhibited the ability of LPS to evoke an inflammatory response in CD14-transfected THP-1 cells. Further, a short synthetic peptide derived from human histidine- and proline-rich glycoprotein also exhibited LPS-inhibitory effects in CD14 transfectants. Taken together, these observations demonstrate the capacity of histidine-rich peptides, irrespective of their origin, to neutralize LPS-induced proinflammatory host responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.